A113458 Least k such that k, k+n and k+2n have the same prime signature.
33, 3, 155, 3, 77, 5, 51, 3, 77, 3, 35, 5, 50, 3, 187, 6, 21, 5, 39, 3, 145, 33, 39, 5, 69, 39, 91, 3, 33, 7, 15, 12, 221, 3, 28, 7, 21, 3, 55, 3, 33, 5, 91, 66, 209, 69, 35, 5, 50, 3, 115, 39, 141, 5, 51, 6, 145, 85, 15, 7, 21, 93, 95, 3, 57, 5, 51, 3, 65, 15, 35, 7, 69, 55, 287, 6
Offset: 1
Examples
a(4) = 3 because 3, 7 and 11 have the same prime signature.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
s:= n-> sort(map(i-> i[2], ifactors(n)[2])): a:= proc(n) option remember; local k; for k while s(k)<>s(k+n) or s(k)<>s(k+2*n) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 28 2018
-
Mathematica
s[n_] := FactorInteger[n][[All, 2]] // Sort; a[n_] := Module[{k}, For[k = 2, True, k++, If[s[k] == s[k+n] == s[k+2n], Return[k]]]]; Array[a, 100] (* Jean-François Alcover, Nov 05 2020 *)
Comments