A113765
Define the first two terms to be 1 and 7. All the other terms are obtained by concatenating the two previous terms.
Original entry on oeis.org
1, 7, 17, 717, 17717, 71717717, 1771771717717, 717177171771771717717, 1771771717717717177171771771717717, 7171771717717717177171771771717717717177171771771717717
Offset: 0
The third term is 17 and it is obtained by concatenating the two previous terms 1 and 7.
Cf.
A000045 - the Fibonacci numbers.
A334025
a(0)=0, a(1)=1; and a(n) = {2*a(n-2), 2*a(n-1)}, where {x,y} is the concatenation of x and y.
Original entry on oeis.org
0, 1, 2, 24, 448, 48896, 89697792, 97792179395584, 179395584195584358791168, 195584358791168358791168391168717582336, 358791168391168717582336391168717582336717582336782337435164672
Offset: 0
a(2) = {2*a(2-2), 2*a(2-1)} = {2*0, 2*1} = 02 = 2.
a(5) = {2*a(5-2), 2*a(5-1)} = {2*24, 2*448} = 48896.
-
a[0] = 0; a[1] = 1; a[n_] := a[n] = FromDigits @ Join[IntegerDigits[2*a[n - 2]], IntegerDigits[2*a[n - 1]]]; Array[a, 11, 0] (* Amiram Eldar, Apr 18 2020 *)
Showing 1-2 of 2 results.
Comments