cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113544 Numbers simultaneously pentagon-free, squarefree and triangle-free.

Original entry on oeis.org

1, 2, 7, 11, 13, 14, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 77, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 119, 122, 127, 131, 133, 134, 137, 139, 142, 143, 146, 149, 151, 157, 158, 161, 163
Offset: 1

Views

Author

Jonathan Vos Post, Jan 13 2006

Keywords

References

  • Bellman, R. and Shapiro, H. N. "The Distribution of Squarefree Integers in Small Intervals." Duke Math. J. 21, 629-637, 1954.
  • Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A. K. Peters, 2003.
  • Hardy, G. H. and Wright, E. M. "The Number of Squarefree Numbers." Section 18.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 269-270, 1979.

Crossrefs

Programs

  • Mathematica
    bad = Rest@ Union[# (# + 1)/2 &@ Range[19], Range[14]^2, # (3 # - 1)/2 &@ Range[11]]; Select[Range[200], {} == Intersection[bad, Divisors[#]] &] (* Giovanni Resta, Jun 13 2016 *)
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\1, fordiv(n,d, if((ispolygonal(d,3) || ispolygonal(d,5)) && d>1, next(2))); listput(v,n[1])); Vec(v); \\ Charles R Greathouse IV, Dec 24 2018

Formula

a(n) has no factor >1 of form a*(a+1)/2 nor b^2 nor c*(3*c-1)/2. A005117 INTERSECTION A112886 INTERSECTION A113508.

Extensions

Corrected and extended by Giovanni Resta, Jun 13 2016