A113544 Numbers simultaneously pentagon-free, squarefree and triangle-free.
1, 2, 7, 11, 13, 14, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 77, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 119, 122, 127, 131, 133, 134, 137, 139, 142, 143, 146, 149, 151, 157, 158, 161, 163
Offset: 1
References
- Bellman, R. and Shapiro, H. N. "The Distribution of Squarefree Integers in Small Intervals." Duke Math. J. 21, 629-637, 1954.
- Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A. K. Peters, 2003.
- Hardy, G. H. and Wright, E. M. "The Number of Squarefree Numbers." Section 18.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 269-270, 1979.
Links
- G. C. Greubel and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Greubel)
- Eric Weisstein's World of Mathematics, Squarefree.
Crossrefs
Programs
-
Mathematica
bad = Rest@ Union[# (# + 1)/2 &@ Range[19], Range[14]^2, # (3 # - 1)/2 &@ Range[11]]; Select[Range[200], {} == Intersection[bad, Divisors[#]] &] (* Giovanni Resta, Jun 13 2016 *)
-
PARI
list(lim)=my(v=List()); forsquarefree(n=1,lim\1, fordiv(n,d, if((ispolygonal(d,3) || ispolygonal(d,5)) && d>1, next(2))); listput(v,n[1])); Vec(v); \\ Charles R Greathouse IV, Dec 24 2018
Formula
Extensions
Corrected and extended by Giovanni Resta, Jun 13 2016