A113547 Triangle read by rows: number of labeled partitions of n with maximin m.
1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 8, 13, 15, 15, 1, 16, 35, 47, 52, 52, 1, 32, 97, 153, 188, 203, 203, 1, 64, 275, 515, 706, 825, 877, 877, 1, 128, 793, 1785, 2744, 3479, 3937, 4140, 4140, 1, 256, 2315, 6347, 11002, 15177, 18313, 20270, 21147, 21147, 1, 512, 6817, 23073, 45368, 68303, 88033, 102678, 111835, 115975, 115975
Offset: 1
Examples
Maximin [123]=max(1)=1, maximin [12|3]=max(1,3)=3, maximin [13|2]=max(1,2)=2, maximin [1|23]=max(1,2)=2 and maximin [1|2|3]=max(1,2,3)=3, so for n=3 the multiset of maximins is {1,2,2,3,3}, making the 3rd line 1,2,2. 1; 1, 1; 1, 2, 2; 1, 4, 5, 5; 1, 8, 13, 15, 15; 1, 16, 35, 47, 52, 52; 1, 32, 97, 153, 188, 203, 203; 1, 64, 275, 515, 706, 825, 877, 877;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Todd Tichenor, A note on graph compositions and their connection to minimax of set partitions, arXiv:1709.00393 [math.CO], 2017.
Crossrefs
Programs
-
Maple
A113547 := proc(n,m) add(combinat[stirling2](m-1,k-1)*k^(n-m),k=1..m) ; end proc: seq(seq( A113547(n,m),m=1..n),n=1..10) ; # R. J. Mathar, Mar 13 2016
-
Mathematica
T[n_, n_] := BellB[n - 1]; T[n_, n_ - 1] := BellB[n - 1]; T[n_, n_ - 2] := BellB[n - 1] - BellB[n - 3]; T[n_, m_] := Sum[StirlingS2[m - 1, k - 1]*k^(n - m), {k, 1, m}]; Table[T[n, m], {n, 1, 5}, {m, 1, n}] (* G. C. Greubel, May 06 2017 *)
Formula
T(n, m) = Sum_{k=1..m} S2(m-1, k-1)*k^(n-m), where S2 is the Stirling numbers of the second kind (A008277). T(n, n)=T(n, n-1)=B(n-1), where B is the Bell numbers (A000110). T(n, n-2)=B(n-1)-B(n-3).
Conjectures: T(n,3) = A007689(n-3). T(n,4) = 2^(n-4)+3^(n-3)+4^(n-4).- R. J. Mathar, Mar 13 2016
Comments