cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113547 Triangle read by rows: number of labeled partitions of n with maximin m.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 8, 13, 15, 15, 1, 16, 35, 47, 52, 52, 1, 32, 97, 153, 188, 203, 203, 1, 64, 275, 515, 706, 825, 877, 877, 1, 128, 793, 1785, 2744, 3479, 3937, 4140, 4140, 1, 256, 2315, 6347, 11002, 15177, 18313, 20270, 21147, 21147, 1, 512, 6817, 23073, 45368, 68303, 88033, 102678, 111835, 115975, 115975
Offset: 1

Views

Author

Keywords

Comments

The maximin of a partition is the maximum over all parts of the minimum label in each part. If the rows are reversed, the result is the number of partitions of n with minimax m.
The number of restricted growth functions of length n where the maximum appears first at position m. The RGF's are defined here as f(1)=1 and f(i) <=1+max_{1<=jR. J. Mathar, Mar 18 2016

Examples

			Maximin [123]=max(1)=1, maximin [12|3]=max(1,3)=3, maximin [13|2]=max(1,2)=2, maximin [1|23]=max(1,2)=2 and maximin [1|2|3]=max(1,2,3)=3, so for n=3 the multiset of maximins is {1,2,2,3,3}, making the 3rd line 1,2,2.
1;
1,  1;
1,  2,   2;
1,  4,   5,   5;
1,  8,  13,  15,  15;
1, 16,  35,  47,  52,  52;
1, 32,  97, 153, 188, 203, 203;
1, 64, 275, 515, 706, 825, 877, 877;
		

Crossrefs

A362924 and A362925 are other versions of this triangle. - N. J. A. Sloane, Aug 10 2023

Programs

  • Maple
    A113547 := proc(n,m)
        add(combinat[stirling2](m-1,k-1)*k^(n-m),k=1..m) ;
    end proc:
    seq(seq( A113547(n,m),m=1..n),n=1..10) ; # R. J. Mathar, Mar 13 2016
  • Mathematica
    T[n_, n_] := BellB[n - 1]; T[n_, n_ - 1] := BellB[n - 1]; T[n_, n_ - 2] := BellB[n - 1] - BellB[n - 3]; T[n_, m_] := Sum[StirlingS2[m - 1, k - 1]*k^(n - m), {k, 1, m}]; Table[T[n, m], {n, 1, 5}, {m, 1, n}] (* G. C. Greubel, May 06 2017 *)

Formula

T(n, m) = Sum_{k=1..m} S2(m-1, k-1)*k^(n-m), where S2 is the Stirling numbers of the second kind (A008277). T(n, n)=T(n, n-1)=B(n-1), where B is the Bell numbers (A000110). T(n, n-2)=B(n-1)-B(n-3).
Conjectures: T(n,3) = A007689(n-3). T(n,4) = 2^(n-4)+3^(n-3)+4^(n-4).- R. J. Mathar, Mar 13 2016