A113584 Beginning with 3, least prime such that concatenation of first n terms and its digit reversal both are primes.
3, 7, 3, 3, 43, 101, 19, 269, 1873, 41, 241, 3137, 139, 9011, 9187, 641, 29881, 12227, 3169, 13499, 8539, 7019, 19447, 12899, 73243, 124769, 1063, 37847, 127, 32321, 104287, 3407, 93553, 256643, 165469, 744659, 60217, 54773, 49297, 214457, 314077, 271409, 602383, 56921, 193051, 255383, 75991, 25667, 583147, 121019
Offset: 1
Links
- J.W.L. (Jan) Eerland, Table of n, a(n) for n = 1..224
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: tcat:= proc(a,b) a*10^(1+ilog10(b))+b end proc: A:= 3: x:= 3: for i from 1 to 50 do p:= 2: do p:= nextprime(p); y:= tcat(x,p); if isprime(y) and isprime(rev(y)) then A:= A,p; x:= y; break fi; od od: A; # Robert Israel, Dec 26 2024
-
Mathematica
w = {3}; Do[k = 1; q = Monitor[ Parallelize[ While[True, If[PrimeQ[ FromDigits[ Join @@ IntegerDigits /@ Reverse[ IntegerDigits[ FromDigits[ Join @@ IntegerDigits /@ Append[w, Prime[k]]]]]]] && PrimeQ[FromDigits[ Join @@ IntegerDigits /@ Append[w, Prime[k]]]], Break[]]; k++]; Prime[k]], k]; w = Append[w, q], {i, 2, 50}]; w (* J.W.L. (Jan) Eerland, Dec 19 2024 *)
-
Python
from itertools import count, islice from gmpy2 import digits, is_prime, mpz, next_prime def agen(): # generator of terms s, r, an = "", "", 3 while True: yield int(an) d = digits(an) s, r, p, sp = s+d, d[::-1]+r, 3, "3" while not is_prime(mpz(s+sp)) or not is_prime(mpz(sp[::-1]+r)): p = next_prime(p) sp = digits(p) an = p print(list(islice(agen(), 50))) # Michael S. Branicky, Jan 02 2025
Extensions
Corrected and extended by Hans Havermann, Nov 08 2005
a(40)-a(50) from J.W.L. (Jan) Eerland, Dec 19 2024