A113607 An extended triangle of Eulerian coefficients A123125: f(x,n)=x^(n+1)+1+A123125(x,n).
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 26, 66, 26, 1, 1, 1, 1, 57, 302, 302, 57, 1, 1, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1
Offset: 1
Examples
Triangle starts: 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 26, 66, 26, 1, 1, 1, 1, 57, 302, 302, 57, 1, 1, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, ...
Crossrefs
Cf. A123125.
Programs
-
Mathematica
f[x_, n_] := f[x,n] = x^(n + 1) + (1 - x)^(n + 1)*Sum[k^n*x^k, {k, 0, Infinity}] + 1; Table[FullSimplify[ExpandAll[f[x, n]]], {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[FullSimplify[ExpandAll[f[x, n]]], x], {n, 0, 10}]]; Flatten[a]