A113620 Numbers whose 3 prime powers are a permutation of each other. Numbers with 3 distinct prime factors whose 3 exponents are a permutation of the 3 bases.
21600, 36000, 48600, 121500, 169344, 225000, 337500, 395136, 857304, 3000564, 6690816, 19600000, 24532992, 37380096, 53782400, 59295096, 88942644, 122500000, 161980416, 171478296, 658834400, 774400000, 943130628, 1022754816, 2155524696, 2344190625, 4326400000
Offset: 1
Examples
21600 = 2^5 * 3^3 * 5^2 36000 = 2^5 * 3^2 * 5^3 48600 = 2^3 * 3^5 * 5^2 121500 = 2^2 * 3^5 * 5^3 169344 = 2^7 * 3^3 * 7^2 225000 = 2^3 * 3^2 * 5^5 337500 = 2^2 * 3^3 * 5^5 395136 = 2^7 * 3^2 * 7^3 857304 = 2^3 * 3^7 * 7^2 3000564 = 2^2 * 3^7 * 7^3 6690816 = 2^11 * 3^3 * 11^2 24532992 = 2^11 * 3^2 * 11^3 37380096 = 2^13 * 3^3 * 13^2 59295096 = 2^3 * 3^2 * 7^7 88942644 = 2^2 * 3^3 * 7^7 161980416 = 2^13 * 3^2 * 13^3 171478296 = 2^3 * 3^11 * 11^2 943130628 = 2^2 * 3^11 * 11^3 2155524696 = 2^3 * 3^13 * 13^2 2344190625 = 3^7 * 5^5 * 7^3 4594613625 = 3^7 * 5^3 * 7^5 6511640625 = 3^5 * 5^7 * 7^3 14010910524 = 2^2 * 3^13 * 13^3 25015118625 = 3^5 * 5^3 * 7^7 35452265625 = 3^3 * 5^7 * 7^5 69486440625 = 3^3 * 5^5 * 7^7 736820803125 = 3^11 * 5^5 * 11^3 3083660425988 = 2^2 * 3^3 * 11^11 3566212687125 = 3^11 * 5^3 * 11^5 15792626953125 = 3^5 * 5^11 * 11^3 20542440283992 = 2^3 * 3^2 * 11^11 212323095703125 = 3^3 * 5^11 * 11^5 8666341994809125 = 3^5 * 5^3 * 11^11 21807007674642216 = 2^3 * 3^2 * 13^13 24073172207803125 = 3^3 * 5^5 * 11^11 32710511511963324 = 2^2 * 3^3 * 13^13
Crossrefs
Cf. A113855.
Formula
{a(n)} = {p(1)^a * p(2)^b * p(3)^c for 3 distinct primes p(1), p(2), p(3) such that (a, b, c) is a permutation of (p(1), p(2), p(3))}.
Extensions
a(10)-a(27) from Giovanni Resta, Jun 13 2016