cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113620 Numbers whose 3 prime powers are a permutation of each other. Numbers with 3 distinct prime factors whose 3 exponents are a permutation of the 3 bases.

Original entry on oeis.org

21600, 36000, 48600, 121500, 169344, 225000, 337500, 395136, 857304, 3000564, 6690816, 19600000, 24532992, 37380096, 53782400, 59295096, 88942644, 122500000, 161980416, 171478296, 658834400, 774400000, 943130628, 1022754816, 2155524696, 2344190625, 4326400000
Offset: 1

Views

Author

Jonathan Vos Post, Jan 26 2006

Keywords

Examples

			21600 = 2^5 * 3^3 * 5^2
36000 = 2^5 * 3^2 * 5^3
48600 = 2^3 * 3^5 * 5^2
121500 = 2^2 * 3^5 * 5^3
169344 = 2^7 * 3^3 * 7^2
225000 = 2^3 * 3^2 * 5^5
337500 = 2^2 * 3^3 * 5^5
395136 = 2^7 * 3^2 * 7^3
857304 = 2^3 * 3^7 * 7^2
3000564 = 2^2 * 3^7 * 7^3
6690816 = 2^11 * 3^3 * 11^2
24532992 = 2^11 * 3^2 * 11^3
37380096 = 2^13 * 3^3 * 13^2
59295096 = 2^3 * 3^2 * 7^7
88942644 = 2^2 * 3^3 * 7^7
161980416 = 2^13 * 3^2 * 13^3
171478296 = 2^3 * 3^11 * 11^2
943130628 = 2^2 * 3^11 * 11^3
2155524696 = 2^3 * 3^13 * 13^2
2344190625 = 3^7 * 5^5 * 7^3
4594613625 = 3^7 * 5^3 * 7^5
6511640625 = 3^5 * 5^7 * 7^3
14010910524 = 2^2 * 3^13 * 13^3
25015118625 = 3^5 * 5^3 * 7^7
35452265625 = 3^3 * 5^7 * 7^5
69486440625 = 3^3 * 5^5 * 7^7
736820803125 = 3^11 * 5^5 * 11^3
3083660425988 = 2^2 * 3^3 * 11^11
3566212687125 = 3^11 * 5^3 * 11^5
15792626953125 = 3^5 * 5^11 * 11^3
20542440283992 = 2^3 * 3^2 * 11^11
212323095703125 = 3^3 * 5^11 * 11^5
8666341994809125 = 3^5 * 5^3 * 11^11
21807007674642216 = 2^3 * 3^2 * 13^13
24073172207803125 = 3^3 * 5^5 * 11^11
32710511511963324 = 2^2 * 3^3 * 13^13
		

Crossrefs

Cf. A113855.

Formula

{a(n)} = {p(1)^a * p(2)^b * p(3)^c for 3 distinct primes p(1), p(2), p(3) such that (a, b, c) is a permutation of (p(1), p(2), p(3))}.

Extensions

a(10)-a(27) from Giovanni Resta, Jun 13 2016