A113645 Numbers k such that sum of exponents in prime factorization of k (i.e., A001222(k)) is >= each prime divisor of k.
4, 8, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 80, 81, 96, 108, 120, 128, 144, 160, 162, 180, 192, 200, 216, 240, 243, 256, 270, 288, 300, 320, 324, 360, 384, 400, 405, 432, 448, 450, 480, 486, 500, 512, 540, 576, 600, 640, 648, 672, 675, 720, 729, 750, 768
Offset: 1
Keywords
Examples
12 = 2^2 *3^1. Since the sum of the prime factorization exponents, 2+1 = 3, is >= the largest prime dividing 12, which is 3, then 12 is included in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Block[{f = FactorInteger@n}, Plus @@ Last /@ f >= Max[First /@ f]]; Select[ Range[2, 800], fQ@ # &] (* Robert G. Wilson v, Jan 16 2006 *) qu[n_]:=n>1&&Block[{f=Transpose@FactorInteger@n, s}, s=Plus@@f[[2]];s>=Max@f[[1]]]; L ={};Do[If[qu[n], Print[n];AppendTo[L, n]], {n, 1000}];L (* Giovanni Resta, Jan 16 2006 *)
-
PARI
isok(m) = {my(f=factor(m)); #select(x->(x>bigomega(f)), f[,1]~) == 0;} \\ Michel Marcus, Sep 17 2020
Extensions
More terms from Robert G. Wilson v and Giovanni Resta, Jan 16 2006