cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113726 A Jacobsthal convolution.

Original entry on oeis.org

1, 0, 1, 4, 5, 8, 25, 44, 77, 176, 353, 660, 1365, 2776, 5417, 10876, 21981, 43648, 87153, 175076, 349669, 698280, 1398585, 2797260, 5590381, 11184720, 22373761, 44735284, 89474165, 178969208, 357910345, 715807004, 1431683837, 2863325216
Offset: 0

Views

Author

Paul Barry, Nov 08 2005

Keywords

Comments

Convolution of A001045(n+1) and A001607(n+1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,4,4},{1,0,1,4},40] (* Harvey P. Dale, Apr 30 2025 *)

Formula

G.f.: 1/((1-x-2*x^2)*(1+x+2*x^2)).
a(n) = a(n-2) + 4*a(n-3) + 4*a(n-4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*2^k*(1+(-1)^(n-k))/2.
a(n) = 2^n/3 + (-1)^n/6 + A001607(n+1)/2. - R. J. Mathar, Aug 23 2011
a(n) = sum(A128099(n, n-2*k), k=0..floor(n/2)). - Johannes W. Meijer, Aug 28 2013