cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113727 A Pell convolution.

Original entry on oeis.org

1, 0, 4, 4, 17, 32, 88, 200, 497, 1184, 2876, 6924, 16737, 40384, 97520, 235408, 568353, 1372096, 3312564, 7997204, 19306993, 46611168, 112529352, 271669848, 655869073, 1583407968, 3822685036, 9228778012, 22280241089, 53789260160
Offset: 0

Views

Author

Paul Barry, Nov 08 2005

Keywords

Comments

Convolution of A000129(n+1) and (n+1)*(-1)^n.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,4,4,1},{1,0,4,4},30] (* Harvey P. Dale, May 24 2014 *)

Formula

G.f.: 1/((1-2x-x^2)(1+2x+x^2)); a(n)=4a(n-2)+4a(n-3)+a(n-4); a(n)=sum{k=0..floor(n/2), C(n-k, k)2^(n-2k)*(1+(-1)^(n-k))/2}.
a(n) = A000129(n+1)/2 +(n+1)*(-1)^n/2. - R. J. Mathar, Sep 20 2012