A113743 Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 6 multiples of n-1, n-2, ..., 1.
1, 7, 19, 37, 61, 87, 123, 163, 207, 253, 307, 373, 447, 511, 589, 673, 763, 843, 949, 1087, 1179, 1309, 1393, 1531, 1693, 1807, 1933, 2119, 2263, 2439, 2559, 2761, 2967, 3147, 3327, 3499, 3691, 3883, 4123, 4309, 4603, 4783, 5067, 5209, 5539, 5763, 6013
Offset: 1
Keywords
Examples
a(1)=1: 1; a(2)=7: 2->7; a(3)=19: 3->14->19; a(4)=37: 4->21->32->37; a(5)=61: 5->28->45->56->61; a(6)=87: 6->35->56->72->82->87; a(7)=123: 7->42->70->92->108->118->123; a(8)=163: 8->49->84->110->132->147->158->163; a(9)=207: 9->56->91->126->155->176->192->202->207; a(10)=253: 10->63->104->140->174->200->220->237->248->253.
Crossrefs
Programs
-
Mathematica
f[n_] := Fold[ #2*Ceiling[ #1/#2 + 5] &, n, Reverse@Range[n - 1]]; Array[f, 47]
-
PARI
a(n)=local(A=n,D);for(i=1,n-1,D=n-i;A=D*ceil(A/D+5));A
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007