A113762 Numbers n with nonzero digits in their decimal representation such that when all numbers formed by inserting the exponentiation symbol between any two digits are added up, the sum is prime.
21, 31, 51, 71, 121, 142, 161, 162, 164, 181, 211, 237, 326, 343, 412, 416, 456, 491, 494, 612, 616, 726, 817, 929, 1226, 1228, 1427, 1513, 1622, 1776, 1824, 1828, 1911, 1915, 1975, 2127, 2188, 3716, 5265, 6276, 6321, 6491, 6852, 7739, 14423, 14487, 15297, 16159
Offset: 1
Examples
a(6) = 142 because 1^42+14^2 = 197, which is prime.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..55
Crossrefs
Cf. A117388.
Programs
-
Mathematica
lst = {}; Do[ If[ Min@ IntegerDigits@n > 0, a=0; p=10; While[(w = Floor[n/p]) > 0, a += w^ Mod[n, p]; p*=10]; If[PrimeQ[a], Print[{n, a}]; AppendTo[lst, n]]], {n, 11, 9999}]; lst
-
Python
from sympy import isprime from itertools import count, islice, product def agen(): for d in count(2): for p in product("123456789", repeat=d): s = "".join(p) if isprime(sum(int(s[:i])**int(s[i:]) for i in range(1, d))): yield int(s) print(list(islice(agen(), 44))) # Michael S. Branicky, Jun 27 2022
Extensions
More terms from Giovanni Resta, Jan 19 2006
More terms from Robert G. Wilson v, Apr 27 2006
a(47) and beyond from Michael S. Branicky, Jun 27 2022