A113780 Number of solutions to 24*n+1 = x^2+24*y^2, x a positive integer, y an integer.
1, 3, 3, 2, 2, 3, 4, 1, 2, 4, 2, 4, 1, 2, 2, 1, 8, 2, 2, 2, 0, 4, 1, 4, 2, 2, 5, 4, 2, 0, 4, 4, 2, 0, 0, 3, 4, 4, 4, 2, 3, 4, 2, 2, 4, 0, 0, 2, 2, 4, 2, 9, 2, 0, 2, 2, 4, 1, 4, 0, 4, 4, 2, 0, 4, 4, 4, 2, 0, 2, 1, 8, 0, 2, 2, 2, 6, 1, 2, 4, 0, 4, 4, 2, 2, 0, 8, 2, 2, 2, 2, 0, 1, 8, 0, 2, 4, 0, 0, 2, 5, 6, 4, 2, 4
Offset: 0
Keywords
Examples
If n=51, the solutions (x,y) are: (7,+-7), (19,+-6), (25,+-5), (29,+-4), (35,0) so a(51)=9. G.f. = 1 + 3*x + 3*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + x^7 + 2*x^8 + 4*x^9 + ... G.f. = q + 3*q^25 + 3*q^49 + 2*q^73 + 2*q^97 + 3*q^121 + 4*q^145 + q^169 + 2*q^193 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[{m = 24 n + 1}, Sum[ KroneckerSymbol[ -12, d] KroneckerSymbol[ 2, m/d], {d, Divisors @ m}]]]; (* Michael Somos, Jun 08 2013 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] EllipticTheta[ 3, 0, x] / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jun 08 2013 *)
-
PARI
{a(n) = if( n<0, 0, n = 24*n + 1; sumdiv( n, d, kronecker( -12, d) * kronecker( 2, n/d)))}; /* Michael Somos, Mar 11 2007 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)), n))}; /* Michael Somos, Jun 08 2012 */
Formula
Expansion of phi(x) * phi(-x^3) / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of f(x, x) * f(x, x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jun 08 2013
Expansion of eta(q^2)^6 * eta(q^3)^2 / (eta(q)^3 * eta(q^4)^2 * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 12 sequence [ 3, -3, 1, -1, 3, -4, 3, -1, 1, -3, 3, -2, ...]. - Michael Somos, Jun 08 2012
Comments