A113852 Numbers whose prime factors are raised to the seventh power.
128, 2187, 78125, 279936, 823543, 10000000, 19487171, 62748517, 105413504, 170859375, 410338673, 893871739, 1801088541, 2494357888, 3404825447, 8031810176, 17249876309, 21870000000, 27512614111, 42618442977, 52523350144, 64339296875, 94931877133, 114415582592
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* Robert G. Wilson v, Jan 26 2006 *) Select[Range[2, 34], SquareFreeQ]^7 (* Amiram Eldar, Oct 13 2020 *)
-
PARI
allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
-
Python
from math import isqrt from sympy import mobius def A113852(n): def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m**7 # Chai Wah Wu, Feb 25 2025
Formula
From Amiram Eldar, Oct 13 2020: (Start)
a(n) = A005117(n+1)^7.
Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)
Extensions
More terms from Robert G. Wilson v, Jan 26 2006