cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113852 Numbers whose prime factors are raised to the seventh power.

Original entry on oeis.org

128, 2187, 78125, 279936, 823543, 10000000, 19487171, 62748517, 105413504, 170859375, 410338673, 893871739, 1801088541, 2494357888, 3404825447, 8031810176, 17249876309, 21870000000, 27512614111, 42618442977, 52523350144, 64339296875, 94931877133, 114415582592
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Proper subset of A001015.
Nonunit terms of A329332 column 7 in ascending order.

Programs

  • Mathematica
    Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* Robert G. Wilson v, Jan 26 2006 *)
    Select[Range[2, 34], SquareFreeQ]^7 (* Amiram Eldar, Oct 13 2020 *)
  • PARI
    allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113852(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**7 # Chai Wah Wu, Feb 25 2025

Formula

From Amiram Eldar, Oct 13 2020: (Start)
a(n) = A005117(n+1)^7.
Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)

Extensions

More terms from Robert G. Wilson v, Jan 26 2006