A113855 Numbers whose prime factors are raised to the powers of each other.
72, 800, 6272, 30375, 247808, 750141, 1384448, 37879808, 189267968, 235782657, 1313046875, 1749600000, 3502727631, 4437573632, 338751673344, 451508436992, 634465620819, 2063731785728, 7863818359375, 7971951402153, 188153927303168
Offset: 1
Keywords
Examples
72 = 8*9 = 2^3*3^2. So primes 2 and 3 are raised to the power of each other. 800 = 2^5*5^2 = 2 to the power 5 times 5 to the power 2.
Crossrefs
Programs
-
PARI
allpwrfact(n) = { local(x, a, b); a = vector(50); a[1] = 2^3*3^2; a[2] = 2^5*5^2; a[3] = 2^7*7^2; a[4] = 2^11*11^2; a[5] = 2^13*13^2; a[6] = 2^17*17^2; a[7] = 2^19*19^2; a[8] = 2^23*23^2; a[9] = 2^29*29^2; a[10]= 2^31*31^2; a[11]= 2^37*37^2; a[12]= 2^41*41^2; a[13]= 3^5*5^3; a[14]= 3^7*7^3; a[15]= 3^11*11^3; a[16]= 3^13*13^3; a[17]= 3^17*17^3; a[18]= 3^19*19^3; a[19]= 3^23*23^3; a[20]= 3^29*29^3; a[21]= 3^31*31^3; a[22]= 3^37*37^3; a[23]= 2^3*2^5*3^2*3^5*5^2*5^3; a[24]= 2^3*2^7*3^2*3^7*7^2*7^3; a[25]= 2^5*2^7*5^2*5^7*7^2*7^5; a[26]= 2^5*2^11*5^2*5^11*11^2*11^5; a[27]= 3^5*3^7*5^3*5^7*7^3*7^5; a[28]=5^7*7^5; a[29]=5^11*11^5; b= vecsort(a); for(x=1, 42, if(b[x]<>0, print1(b[x]", "))) } (Shepherd)
Extensions
Corrected by Rick L. Shepherd, Feb 02 2006
Comments