cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113910 Integers of the form (Lucas(i+1) - 2*A006206(i+2))/(A006206(i+2) - A006206(i)), i > 2; Lucas = A000204.

Original entry on oeis.org

3, 7, 5, 9, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1

Views

Author

Creighton Dement, Jan 29 2006

Keywords

Comments

Let p and p+2 be twin primes. Then Lucas(p) = 1 + p*A006206(p) and Lucas(p+2) = 1 + (p+2)*A006206(p+2). It follows from Lucas(n) + Lucas(n+1) = Lucas(n+2) that p = (Lucas(p+1) - 2*A006206(p+2))/(A006206(p+2) - A006206(p))
For i = 3, 4, 5, 6, 7, 8, 9, 10, 11: ((Lucas(i+1) - 2*A006206(i+2))/(A006206(i+2) - A006206(i))) = (3, 7, 5, 19/3, 31/4, 9, 87/10, 149/14, 11, 135/11, 663/50, 1094/77, 1787/120, 2939/181, 17, 7849/434, 12799/672, 20894/1041, 34031/1622, 55469/2514, 45131/1962, 146921/6115, 238915/9554, 194252/7465, 631347/23386, 1025917/36617, 29, 2706059/90178, 4393211/141710, 3565643/111405, 11573003/350702). - Creighton Dement, Jan 31 2006

Crossrefs

Programs

  • Maple
    # First 63 Terms with(combinat): with(numtheory): A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end; A000204 := n->fibonacci(n+1)+fibonacci(n-1); T := n -> (A000204(n+1) - 2*A006206(n+2))/(A006206(n+2)-A006206(n)); A113910 := []: for i from 3 by 1 to 2000 do if is(T(i) = floor(T(i))) then A113910 := [op(A113910), T(i)]; fi: od: A113910; # Creighton Dement, Jan 15 2009

Formula

It is conjectured that a(n+4) = A001359(n+2) for all n.

Extensions

Extended and Maple definition by Creighton Dement, Jan 15 2009