A113910 Integers of the form (Lucas(i+1) - 2*A006206(i+2))/(A006206(i+2) - A006206(i)), i > 2; Lucas = A000204.
3, 7, 5, 9, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487
Offset: 1
Keywords
Programs
-
Maple
# First 63 Terms with(combinat): with(numtheory): A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end; A000204 := n->fibonacci(n+1)+fibonacci(n-1); T := n -> (A000204(n+1) - 2*A006206(n+2))/(A006206(n+2)-A006206(n)); A113910 := []: for i from 3 by 1 to 2000 do if is(T(i) = floor(T(i))) then A113910 := [op(A113910), T(i)]; fi: od: A113910; # Creighton Dement, Jan 15 2009
Formula
It is conjectured that a(n+4) = A001359(n+2) for all n.
Extensions
Extended and Maple definition by Creighton Dement, Jan 15 2009
Comments