A113927 a(1)=1, and recursively a(n+1) is the smallest prime p of the form p = 2*a(n) + 5^k for some k>0.
1, 7, 19, 43, 211, 547, 4219, 8443, 17011, 34147, 71419, 142963, 1220989051, 3662681227, 19080811690579, 38161623381163, 76324467465451, 152648936884027, 305299094471179, 4656613483675581520483
Offset: 1
Examples
a(1) = 1 by definition. a(2) = 2*1 + 5^1 = 7. a(3) = 2*7 + 5^1 = 19. a(4) = 2*19 + 5^1 = 43. a(5) = 2*43 + 5^3 = 211. a(6) = 2*211 + 5^3 = 547. a(7) = 2*547 + 5^5 = 4219. a(13) = 2*142963 + 5^13 = 1220989051. a(20) = 2*305299094471179 + 5^31 = 4656613483675581520483, where 31 is a record exponent. a(22) = 2*9313226967351163119091 + 5^45 = 28421709449030461369547296941307 and 45 is the new record exponent.
Comments