cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113954 Expansion of (1-2x^2)/((1-2x)(1+x)^2).

Original entry on oeis.org

1, 0, 1, 2, 3, 8, 13, 30, 55, 116, 225, 458, 907, 1824, 3637, 7286, 14559, 29132, 58249, 116514, 233011, 466040, 932061, 1864142, 3728263, 7456548, 14913073, 29826170, 59652315, 119304656, 238609285, 477218598, 954437167, 1908874364, 3817748697
Offset: 0

Views

Author

Paul Barry, Nov 09 2005

Keywords

Comments

Inverse binomial transform of phi(phi(3^n)).

Crossrefs

Cf. A103196.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x^2)/((1-2x)(1+x)^2),{x,0,40}],x] (* or *) LinearRecurrence[{0,3,2},{1,0,1},40] (* Harvey P. Dale, Aug 20 2015 *)

Formula

a(n)=3a(n-2)+2a(n-3); a(n)=2^(n+1)/9+(7-3n)(-1)^n/9; a(n)=a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)phi(phi(3^k))}; a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)(2*3^k/9+C(1, k)/3+4*C(0, k)/9)}; a(n)=sum{k=0..n, J(n-k+1)((-1)^(k+1)-2C(1, k)+4C(0, k))} where J(n)=A001045(n).