A113979 Number of compositions of n with an even number of 1's.
1, 0, 2, 1, 6, 6, 20, 28, 72, 120, 272, 496, 1056, 2016, 4160, 8128, 16512, 32640, 65792, 130816, 262656, 523776, 1049600, 2096128, 4196352, 8386560, 16781312, 33550336, 67117056, 134209536, 268451840, 536854528, 1073774592, 2147450880
Offset: 0
Examples
a(4)=6 because the compositions of 4 having an even number of 1's are 4,22,211,121,112 and 1111 (the other compositions of 4 are 31 and 13).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Crossrefs
Programs
-
Maple
a:=proc(n) if n mod 2 = 0 then 2^(n-2)+2^((n-2)/2) else 2^(n-2)-2^((n-3)/2) fi end: seq(a(n),n=1..38); # Emeric Deutsch, Feb 01 2006
-
Mathematica
f[n_] := If[ EvenQ[n], 2^(n - 2) + 2^((n - 2)/2), 2^(n - 2) - 2^((n - 3)/2)]; Array[f, 34] (* Robert G. Wilson v, Feb 01 2006 *)
-
PARI
a(n) = n-=2; (n==-2) + 1<
=0, (-1)^n << (n>>1)); \\ Kevin Ryde, May 02 2023
Formula
a(0) = 1, a(n) = 2^(n-2) + 2^((n-2)/2) if n is positive and even, otherwise a(n) = 2^(n-2) - 2^((n-3)/2).
G.f.: (1-z)*(1-z-z^2)/((1-2*z)*(1-2*z^2)). - Emeric Deutsch, Feb 03 2006
E.g.f.: (1 + exp(2*x) - sqrt(2)*sinh(x*sqrt(2)) + 2*cosh(x*sqrt(2)))/4. - Sergei N. Gladkovskii, Nov 18 2011
a(k) = (1/4)*0^k + (1/4)*2^k + (1/8)*(2-sqrt(2))*(sqrt(2))^k + (1/8)*(2+sqrt(2))*(-sqrt(2))^k. - Sergei N. Gladkovskii, Nov 18 2011
Extensions
More terms from Robert G. Wilson v and Emeric Deutsch, Feb 01 2006
a(0)=1 prepended and formulas corrected by Jason Yuen, Sep 09 2024
Comments