A114002 Expansion of g.f. x^k(1+x^(k+1))/(1-x^(k+1)).
1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 0, 0, 1, 2, 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 2, 0, 1; 2, 2, 0, 1; 2, 0, 0, 0, 1; 2, 2, 2, 0, 0, 1; 2, 0, 0, 0, 0, 0, 1; ...
Programs
-
Mathematica
T[n_,k_]:=SeriesCoefficient[x^k(1+x^(k+1))/(1-x^(k+1)),{x,0,n}]; Table[T[n,k],{n,0,13},{k,0,n}] //Flatten (* Stefano Spezia, Sep 08 2023 *)
Formula
Column k has g.f. x^k(1+x^(k+1))/(1-x^(k+1)).
Equals 2*A051731 - I, I = Identity matrix. - Gary W. Adamson, Nov 07 2007
Comments