A114015 Quaternary emirpimes.
12, 21, 1022, 1102, 1113, 1222, 1233, 1303, 1313, 1323, 2011, 2012, 2032, 2102, 2201, 2221, 2302, 3031, 3111, 3131, 3231, 3321, 10102, 10213, 10231, 10232, 10233, 10322, 11012, 11033, 11103, 11231, 11321, 11331, 12013, 12022, 12023, 12032
Offset: 1
Examples
a(1) = 12 because 12 (base 4) = 6 (base 10) is semiprime and R(12) = 21, where 21 (base 4) = 9 (base 10) is a different semiprime. a(19) = 3131 because 3131 (base 4) = 221 (base 10) = 13 * 17 (base 10) is semiprime and R(3131) = 1313, where 1313 (base 4) = 119 (base 10) = 7 * 17 (base 10) is a different semiprime.
Links
- Eric Weisstein, Jonathan Vos Post, et al., Emirpimes.
- Eric Weisstein's World of Mathematics, Quaternary.
Programs
-
Maple
A007090 := proc(n) local b4; b4 := convert(n,base,4) ; add( op(i,b4)*10^(i-1),i=1..nops(b4)) ; end proc: isA114015 := proc(n) local b4;b4rev; if isA001358(n) then b4 := convert(n,base,4) ; b4rev := add(op(-i,b4)*4^(i-1),i=1..nops(b4)) ; if n = b4rev then false; else isA001358(b4rev) ; end if; else false; end if; end proc: for n from 1 to 400 do if isA114015(n) then printf("%d,",A007090(n)) ; end if; end do: # R. J. Mathar, Dec 22 2010
Formula
Extensions
1102 inserted by R. J. Mathar, Dec 22 2010
Comments