cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114087 Triangle read by rows: T(n,k) is the number of partitions of n whose tails below their Durfee squares have size k (n>=1; 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 3, 5, 3, 4, 1, 1, 1, 5, 4, 5, 5, 4, 4, 1, 1, 1, 6, 5, 7, 5, 7, 4, 5, 1, 1, 1, 7, 6, 9, 7, 7, 7, 5, 5, 1, 1, 1, 9, 7, 11, 10, 10, 7, 9, 5, 6, 1, 1, 1, 10, 9, 13, 12, 14, 10, 9, 9, 6, 6, 1, 1, 1, 12, 10, 17, 15, 17, 15
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

Row sums yield A000041. Column 0 is A003114. Sum_{k=0..n-1} k*T(n,k) = A116365(n).

Examples

			T(6,2) = 3 because we have [4,1,1], [2,2,2] and [2,2,1,1] (the bottom tails are [1,1], [2] and [1,1], respectively, each being a partition of 2).
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j),j=1..k)/product((1-(t*z)^i),i=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    T:= (n, k)-> add(b(k, d)*b(n-d^2-k, d), d=0..floor(sqrt(n))):
    seq(seq(T(n, k), k=0..n-1), n=1..20); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]] ]; T[n_, k_] := Sum[b[k, d]*b[n-d^2-k, d], {d, 0, Floor[Sqrt[n]]}]; Table[Table[ T[n, k], {k, 0, n-1}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

G.f.: Sum_(q^(k^2)/Product_((1-q^j)(1-(t*q)^j), j=1..k), k=1..infinity).