A114095 Number of partitions of n into parts that are distinct mod 7.
1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 10, 13, 16, 18, 21, 24, 31, 31, 38, 44, 49, 56, 62, 76, 76, 90, 100, 113, 126, 136, 161, 161, 186, 201, 234, 252, 267, 308, 308, 349, 370, 449, 462, 483, 546, 546, 609, 637, 813, 792
Offset: 1
Keywords
Examples
a(7)=5 because there are 5 such partitions of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #,7]& /@ Partitions[n],(Length@# == Length@Union@#)&]; lst = Array[np,50] (* corrected by Seth A. Troisi, May 17 2022 *)
-
PARI
a(n) = my(nb=0); forpart(p=n, if (#p == #Set(apply(x->(x%7), Vec(p))), nb++)); nb; \\ Michel Marcus, May 18 2022