A114097 Number of partitions of n into parts that are distinct mod 10.
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 20, 25, 30, 34, 40, 47, 56, 63, 73, 84, 95, 111, 127, 140, 161, 180, 209, 230, 259, 288, 322, 366, 405, 443, 498, 545, 618, 675, 740, 813, 894, 1002, 1084, 1181, 1304, 1410, 1569, 1706, 1833, 2001, 2169, 2409, 2569
Offset: 0
Keywords
Examples
a(7)=5 because there are 5 such partition of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2900 (terms n = 1..600 from Fausto A. C. Cariboni)
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #,10]& /@ Partitions[n],(Length@# != Length@Union@#)&]; lst = Array[np,50]
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 23 2021