A114098 Number of partitions of n into parts that are distinct mod 9.
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 20, 25, 28, 32, 39, 46, 50, 62, 66, 78, 93, 101, 112, 132, 150, 161, 192, 202, 232, 268, 287, 312, 361, 400, 425, 497, 516, 582, 658, 698, 748, 858, 932, 982, 1135, 1164, 1296, 1443, 1519, 1610, 1845, 1968, 2059
Offset: 0
Keywords
Examples
a(7)=5 because there are 5 such partition of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500 (terms n = 1..700 from Fausto A. C. Cariboni)
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #,9]& /@ Partitions[n],(Length@# != Length@Union@#)&]; lst = Array[np,50]
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 23 2021