A114144 A variant of the Josephus Problem in which three persons are to be eliminated at the same time.
3, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 133
Offset: 1
Examples
If there are 15 persons, then 2, 7, 12, 4, 9, 14, 6, 11, 1, 10, 15, 5, 3, 13 are to be eliminated and the survivor is 8. Therefore a(5) = J(15) = 8.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, 1994, pp. 9-10.
Programs
-
Mathematica
(*This function is defined only for numbers that are multiples of 3.*) jose[3] = 3; jose[n_?(IntegerQ[ #/3] &)] := If[Mod[n, 6] == 0, If[jose[n/2] < n/3 + 1, 2jose[n/2] + n/3 - 1,2jose[n/2] - 2n/3 - 1], Which[jose[(n - 3)/2] < (n - 3)/6 +1, 2jose[(n - 3)/2] + (n - 3)/3 + 2, (n - 3)/6 < jose[(n - 3)/2] < (n - 3)/3 + 1, 2jose[(n - 3)/2] + (n - 3)/3 + 3, (n - 3)/3 < jose[(n - 3)/2], 2jose[(n - 3)/2] - 2(n - 3)/3 + 1]];
-
PARI
a(n) = if(n==0, 1, my(t); if(n%2, t=a(n\2); if(t>n-1, 2*t-2*n+3, if(t>n\2, 2*t+n+2, 2*t+n+1)), t=a(n/2); if(t>n, 2*t-2*n-1, 2*t+n-1))); \\ Jinyuan Wang, Apr 20 2025
Formula
The function J(n) is defined only for integers n that have 3 as a factor. J(6m+3) = 2J(3m)+2m+2 (if J(3m) <= m), J(6m+3) = 2J(3m)+2m+3 (if m+1 <= J(3m) <= 2m) and J(6m+3) = 2J(3m)-4m+1 (if 2m+1 <= J(3m)). J(6m) = 2J(3m)+2m-1 (if J(3m) <= 2m) and J(6m) = 2J(3m)-4m-1 (if J(3m) > 2m).
Extensions
More terms from Jinyuan Wang, Apr 20 2025
Comments