cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114144 A variant of the Josephus Problem in which three persons are to be eliminated at the same time.

Original entry on oeis.org

3, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 133
Offset: 1

Views

Author

Satoshi Hashiba, Daisuke Minematsu and Ryohei Miyadera, Feb 03 2006

Keywords

Comments

This is a variant of the Josephus Problem. When there are 3m persons, the first process of elimination starts with the first person, the second with the (m+1)-st person and the third with the (2m+1)-st person. We suppose that the first process comes first, the second process secondly and the third process thirdly. J(n) is the position of the survivor when there are n persons. Our sequence is a(n) = J(3*n).

Examples

			If there are 15 persons, then 2, 7, 12, 4, 9, 14, 6, 11, 1, 10, 15, 5, 3, 13 are to be eliminated and the survivor is 8. Therefore a(5) = J(15) = 8.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, 1994, pp. 9-10.

Crossrefs

Programs

  • Mathematica
    (*This function is defined only for numbers that are multiples of 3.*)
    jose[3] = 3; jose[n_?(IntegerQ[ #/3] &)] := If[Mod[n, 6] == 0, If[jose[n/2] < n/3 + 1, 2jose[n/2] + n/3 - 1,2jose[n/2] - 2n/3 - 1], Which[jose[(n - 3)/2] < (n - 3)/6 +1, 2jose[(n - 3)/2] + (n - 3)/3 + 2, (n - 3)/6 < jose[(n - 3)/2] < (n - 3)/3 + 1, 2jose[(n - 3)/2] + (n - 3)/3 + 3, (n - 3)/3 < jose[(n - 3)/2], 2jose[(n - 3)/2] - 2(n - 3)/3 + 1]];
  • PARI
    a(n) = if(n==0, 1, my(t); if(n%2, t=a(n\2); if(t>n-1, 2*t-2*n+3, if(t>n\2, 2*t+n+2, 2*t+n+1)), t=a(n/2); if(t>n, 2*t-2*n-1, 2*t+n-1))); \\ Jinyuan Wang, Apr 20 2025

Formula

The function J(n) is defined only for integers n that have 3 as a factor. J(6m+3) = 2J(3m)+2m+2 (if J(3m) <= m), J(6m+3) = 2J(3m)+2m+3 (if m+1 <= J(3m) <= 2m) and J(6m+3) = 2J(3m)-4m+1 (if 2m+1 <= J(3m)). J(6m) = 2J(3m)+2m-1 (if J(3m) <= 2m) and J(6m) = 2J(3m)-4m-1 (if J(3m) > 2m).

Extensions

More terms from Jinyuan Wang, Apr 20 2025