A114151 Triangle, read by rows, given by the product R^-2*Q^3 = Q^-1*P^2 using triangular matrices P=A113370, Q=A113381, R=A113389.
1, 0, 1, 0, 3, 1, 0, 15, 6, 1, 0, 136, 66, 9, 1, 0, 1998, 1091, 153, 12, 1, 0, 41973, 24891, 3621, 276, 15, 1, 0, 1166263, 737061, 110637, 8482, 435, 18, 1, 0, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1
Offset: 0
Examples
Triangle R^-2*Q^3 = Q^-1*P^2 begins: 1; 0,1; 0,3,1; 0,15,6,1; 0,136,66,9,1; 0,1998,1091,153,12,1; 0,41973,24891,3621,276,15,1; ... Compare to R (A113389): 1; 3,1; 15,6,1; 136,66,9,1; 1998,1091,153,12,1; 41973,24891,3621,276,15,1; ... Thus R^-2*Q^3 = Q^-1*P^2 equals R shift right one column.
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-1*P^2)[n+1,k+1]
Comments