cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114151 Triangle, read by rows, given by the product R^-2*Q^3 = Q^-1*P^2 using triangular matrices P=A113370, Q=A113381, R=A113389.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 15, 6, 1, 0, 136, 66, 9, 1, 0, 1998, 1091, 153, 12, 1, 0, 41973, 24891, 3621, 276, 15, 1, 0, 1166263, 737061, 110637, 8482, 435, 18, 1, 0, 40747561, 27110418, 4176549, 323874, 16430, 630, 21, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Comments

Complementary to A114150, which gives R^2*Q^-1 = Q^3*P^-2.

Examples

			Triangle R^-2*Q^3 = Q^-1*P^2 begins:
1;
0,1;
0,3,1;
0,15,6,1;
0,136,66,9,1;
0,1998,1091,153,12,1;
0,41973,24891,3621,276,15,1; ...
Compare to R (A113389):
1;
3,1;
15,6,1;
136,66,9,1;
1998,1091,153,12,1;
41973,24891,3621,276,15,1; ...
Thus R^-2*Q^3 = Q^-1*P^2 equals R shift right one column.
		

Crossrefs

Cf. A113370 (P), A113381 (Q), A113389 (R); A114150 (R^2*Q^-1=Q^3*P^-2), A114152 (R^3*P^-1), A114153 (R^-1*P^3), A114154 (R^3*Q^-2), A114155 (Q^-2*P^3); A114156 (P^-1), A114158 (Q^-1), A114159 (R^-1).

Programs

  • PARI
    T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-1*P^2)[n+1,k+1]