A114153 Triangle, read by rows, given by the product R^-1*P^3 using triangular matrices P=A113370, R=A113389.
1, 0, 1, 0, 6, 1, 0, 48, 12, 1, 0, 605, 186, 18, 1, 0, 11196, 3892, 414, 24, 1, 0, 280440, 106089, 12021, 732, 30, 1, 0, 8981460, 3620379, 429345, 27152, 1140, 36, 1, 0, 353283128, 149740555, 18386361, 1196910, 51445, 1638, 42, 1
Offset: 0
Examples
Triangle R^-1*P^3 begins: 1; 0,1; 0,6,1; 0,48,12,1; 0,605,186,18,1; 0,11196,3892,414,24,1; 0,280440,106089,12021,732,30,1; ... Compare to R^2 (A113392): 1; 6,1; 48,12,1; 605,186,18,1; 11196,3892,414,24,1; 280440,106089,12021,732,30,1; ... Thus R^-1*P^3 equals R^2 shift right one column.
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1*P^3)[n+1,k+1]
Comments