A114155 Triangle, read by rows, given by the product Q^-2*P^3 using triangular matrices P=A113370, Q=A113381.
1, -1, 1, 3, 2, 1, 6, 6, 5, 1, -8, 37, 45, 8, 1, -501, 429, 635, 120, 11, 1, -13623, 7629, 12815, 2556, 231, 14, 1, -409953, 185776, 343815, 71548, 6556, 378, 17, 1, -14544683, 5817106, 11651427, 2508528, 233706, 13391, 561, 20, 1
Offset: 0
Examples
Triangle Q^-2*P^3 begins: 1; -1,1; 3,2,1; 6,6,5,1; -8,37,45,8,1; -501,429,635,120,11,1; -13623,7629,12815,2556,231,14,1; -409953,185776,343815,71548,6556,378,17,1; ... Compare to Q (A113381): 1; 2,1; 6,5,1; 37,45,8,1; 429,635,120,11,1; 7629,12815,2556,231,14,1;... Thus Q^-2*P^3 shift left one column equals Q.
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (Q^-2*P^3)[n+1,k+1]
Comments