A114156 Triangle, read by rows, equal to the matrix inverse of P=A113370.
1, -1, 1, 3, -4, 1, 6, 0, -7, 1, -8, 38, -21, -10, 1, -501, 692, -119, -60, -13, 1, -13623, 14910, -420, -735, -117, -16, 1, -409953, 401802, 22911, -12470, -2080, -192, -19, 1, -14544683, 13278520, 1577527, -255570, -51064, -4424, -285, -22, 1
Offset: 0
Examples
Triangle P^-1 begins: 1; -1,1; 3,-4,1; 6,0,-7,1; -8,38,-21,-10,1; -501,692,-119,-60,-13,1; -13623,14910,-420,-735,-117,-16,1; -409953,401802,22911,-12470,-2080,-192,-19,1; ... Triangle P^-2 begins: 1; -2,1; 10,-8,1; -9,28,-14,1; -177,160,28,-20,1; -2307,1366,455,10,-26,1; -38874,15982,8666,660,-26,-32,1; ...
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); (P^-1)[n+1,k+1]