A114158 Triangle, read by rows, equal to the matrix inverse of Q=A113381.
1, -2, 1, 4, -5, 1, 21, -5, -8, 1, 130, 20, -32, -11, 1, 1106, 840, -260, -77, -14, 1, 10044, 24865, -2584, -1089, -140, -17, 1, -18366, 823383, -12828, -21428, -2737, -221, -20, 1, -9321125, 31847653, 1160956, -523831, -73458, -5474, -320, -23, 1
Offset: 0
Examples
Triangle Q^-1 begins: 1; -2,1; 4,-5,1; 21,-5,-8,1; 130,20,-32,-11,1; 1106,840,-260,-77,-14,1; 10044,24865,-2584,-1089,-140,-17,1; -18366,823383,-12828,-21428,-2737,-221,-20,1; ... Triangle Q^-2 begins: 1; -4,1; 18,-10,1; 20,30,-16,1; -139,255,24,-22,1; -3945,3085,544,0,-28,1; -99849,51015,12444,671,-42,-34,1; ...
Crossrefs
Programs
-
PARI
T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); Q=matrix(#P,#P,r,c,if(r>=c,(P^(3*c-1))[r-c+1,1])); (Q^-1)[n+1,k+1]