A114159 Triangle, read by rows, equal to the matrix inverse of R=A113389.
1, -3, 1, 3, -6, 1, 35, -12, -9, 1, 396, -29, -45, -12, 1, 6237, 582, -462, -96, -15, 1, 131613, 30684, -6408, -1534, -165, -18, 1, 3518993, 1300810, -96705, -34020, -3515, -252, -21, 1, 114244366, 59124226, -764835, -944334, -102180, -6675, -357, -24, 1
Offset: 0
Examples
Triangle R^-1 begins: 1; -3,1; 3,-6,1; 35,-12,-9,1; 396,-29,-45,-12,1; 6237,582,-462,-96,-15,1; 131613,30684,-6408,-1534,-165,-18,1; 3518993,1300810,-96705,-34020,-3515,-252,-21,1; ... Triangle R^-2 begins: 1; -6,1; 24,-12,1; 79,30,-18,1; 324,356,18,-24,1; 42,5523,615,-12,-30,1; -79346,112533,16731,640,-60,-36,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(P,Q,R,W);P=Mat(1);for(m=2,n+1,W=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,W[i,j]=1,if(j==1, W[i,1]=1,W[i,j]=(P^(3*j-2))[i-j+1,1]));));P=W); R=matrix(#P,#P,r,c,if(r>=c,(P^(3*c))[r-c+1,1])); (R^-1)[n+1,k+1]}