cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114164 Riordan array (1/(1-2x), x(1-x)/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 8, 1, 16, 56, 41, 11, 1, 32, 160, 170, 73, 14, 1, 64, 432, 620, 377, 114, 17, 1, 128, 1120, 2072, 1666, 704, 164, 20, 1, 256, 2816, 6496, 6608, 3649, 1178, 223, 23, 1, 512, 6912, 19392, 24192, 16722, 7001, 1826, 291, 26, 1, 1024, 16640, 55680, 83232, 69876, 36365, 12235, 2675, 368, 29, 1
Offset: 0

Views

Author

Paul Barry, Nov 15 2005

Keywords

Comments

Row sums are A081567. Diagonal sums are A085810. Product of Pascal triangle A007318 and Morgan-Voyce triangle A085478.
Unsigned version of A123876. - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
   1;
   2,   1;
   4,   5,   1;
   8,  18,   8,  1;
  16,  56,  41, 11,  1;
  32, 160, 170, 73, 14, 1;
  ...
		

Crossrefs

T(2n,n) gives A026000.

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n, j)*C(j+k, 2k);
T(n,k) = Sum_{j=0..n} C(n, k+j)*C(k, k-j)*2^(n-k-j);
T(n,k) = Sum_{j=0..n-k} C(n+k-j, n-k-j)*C(k, j)*(-1)^j*2^(n-k-j).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014

Extensions

More terms from Michel Marcus, Sep 09 2024