cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A114172 Triangle, read by rows, where the g.f. of column n, C_n(x), equals the g.f. of row n, R_n(x), divided by (1-x)^(n+1), for n>=0; e.g., C_n(x) = R_n(x)/(1-x)^(n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 16, 9, 1, 1, 9, 31, 36, 12, 1, 1, 11, 51, 95, 66, 15, 1, 1, 13, 76, 199, 229, 106, 18, 1, 1, 15, 106, 361, 601, 467, 156, 21, 1, 1, 17, 141, 594, 1316, 1509, 844, 216, 24, 1, 1, 19, 181, 911, 2542, 3951, 3293, 1395, 286, 27, 1, 1, 21, 226
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle begins:
1;
1,1;
1,3,1;
1,5,6,1;
1,7,16,9,1;
1,9,31,36,12,1;
1,11,51,95,66,15,1;
1,13,76,199,229,106,18,1;
1,15,106,361,601,467,156,21,1;
1,17,141,594,1316,1509,844,216,24,1;
1,19,181,911,2542,3951,3293,1395,286,27,1;
1,21,226,1325,4481,8910,10193,6447,2155,366,30,1; ...
Where g.f. for columns is formed from g.f. of rows:
GF(column 2) = (1 + 3*x + 1*x^2)/(1-x)^3
= 1 + 6*x + 16*x^2 + 31*x^3 + 51*x^4 + 76*x^5 +...
GF(column 3) = (1 + 5*x + 6*x^2 + 1*x^3)/(1-x)^4
= 1 + 9*x + 36*x^2 + 95*x^3 + 199*x^4 + 361*x^5 +...
GF(column 4) = (1 + 7*x + 16*x^2 + 9*x^3 + 1*x^4)/(1-x)^5
= 1 + 12*x + 66*x^2 + 229*x^3 + 601*x^4 + 1316*x^5 +...
		

Crossrefs

Cf. A114173 (row sums), A114174 (central terms), A114175 (row sums-square).

Programs

  • PARI
    {T(n,k)=if(n
    				

A114174 Central terms of triangle A114172 found in even-indexed rows.

Original entry on oeis.org

1, 3, 16, 95, 601, 3951, 26650, 183043, 1274080, 8959268, 63512890, 453227590, 3252065077, 23443729683, 169680654790, 1232381601759, 8977925594880, 65579423363511, 480162707557696, 3523121247341469, 25899477669429042
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Crossrefs

Cf. A114172, A114173 (row sums), A114175 (row sums-square).

A114173 Row sums of triangle A114172, where the g.f. of column n equals the g.f. of row n divided by (1-x)^(n+1).

Original entry on oeis.org

1, 2, 5, 13, 34, 90, 240, 643, 1729, 4663, 12607, 34156, 92702, 251975, 685759, 1868310, 5094753, 13904028, 37971570, 103762963, 283703065, 776069296, 2123892683, 5814922585, 15926507984, 43636524179, 119597410199
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Crossrefs

Cf. A114172, A114174 (central terms), A114175 (row sums-square).

A114176 Triangle, read by rows, where the g.f. of column n, C_n(x), equals the g.f. of row n, R_n(x), divided by (1-x)^(n+1)*(1-x^2)^n, for n>=0; e.g., C_n(x) = R_n(x)/(1-x)^(n+1)/(1-x^2)^n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 18, 10, 1, 1, 15, 43, 43, 15, 1, 1, 21, 86, 135, 87, 21, 1, 1, 28, 156, 345, 345, 159, 28, 1, 1, 36, 260, 771, 1083, 777, 267, 36, 1, 1, 45, 410, 1557, 2901, 2927, 1577, 423, 45, 1, 1, 55, 615, 2913, 6909, 9219, 7001, 2973, 637, 55, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2005

Keywords

Examples

			Triangle begins:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,18,10,1;
1,15,43,43,15,1;
1,21,86,135,87,21,1;
1,28,156,345,345,159,28,1;
1,36,260,771,1083,777,267,36,1;
1,45,410,1557,2901,2927,1577,423,45,1;
1,55,615,2913,6909,9219,7001,2973,637,55,1; ...
where g.f. for columns is formed from g.f. of rows:
column 2: (1 + 3*x + 1*x^2)/(1-x)^3/(1-x^2)^2 = 1 + 6*x + 18*x^2 + 43*x^3 + 86*x^4 + 156*x^5 +...
column 3: (1 + 6*x + 6*x^2 + 1*x^3)/(1-x)^4/(1-x^2)^3 = 1 + 10*x + 43*x^2 + 135*x^3 + 345*x^4 + 771*x^5 +...
column 4: (1 + 10*x + 18*x^2 + 10*x^3 + 1*x^4)/(1-x)^5/(1-x^2)^4 = 1 + 15*x + 87*x^2 + 345*x^3 + 1083*x^4 + 2901*x^5 +...
		

Crossrefs

Cf. A114177 (row sums), A114174 (central terms), A114175 (row sums-square).

Programs

  • PARI
    T(n,k)=if(n
    				
  • PARI
    {T(n,k)=if(n==k,1,sum(j=0,k,T(k,j)*sum(i=0,n-j-k, (-1)^(n-i-j-k)*binomial(2*k+i,i)*binomial(n-i-j-1,n-i-j-k))))} \\ Paul D. Hanna, Jun 21 2006

Formula

T(n,k) = Sum_{j=0..k} T(k,j)*Sum_{i=0..n-j-k} (-1)^(n-i-j-k)*C(2k+i,i)*C(n-i-j-1,n-i-j-k) for n>k with T(n,n)=1 for n>=0. - Paul D. Hanna, Jun 21 2006
Showing 1-4 of 4 results.