A114188 Riordan array (1/(1-x),x(1+x)/(1-x)^2).
1, 1, 1, 1, 4, 1, 1, 9, 7, 1, 1, 16, 26, 10, 1, 1, 25, 70, 52, 13, 1, 1, 36, 155, 190, 87, 16, 1, 1, 49, 301, 553, 403, 131, 19, 1, 1, 64, 532, 1372, 1462, 736, 184, 22, 1, 1, 81, 876, 3024, 4446, 3206, 1216, 246, 25, 1, 1, 100, 1365, 6084, 11826, 11584, 6190, 1870, 317
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 4, 1; 1, 9, 7, 1; 1, 16, 26, 10, 1; 1, 25, 70, 52, 13, 1; 1, 36,155,190, 87, 16, 1;
Links
- P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
Formula
T(n, k) = Sum_{j=0..n} C(n, j)*C(k, j-k)2^(j-k).
T(n, k) = Sum_{j=0..n-k} C(k, j)*C(n+k-j, 2k).
T(n,k) = 2*T(n-1,k)+T(n-1,k-1)-T(n-2,k)+T(n-2,k-1), T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014
G.f.: 1/(1-y-x*(1+y)/(1-y)). - Vladimir Kruchinin, Apr 21 2015
Comments