cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114192 Riordan array (1/(1-2x),x/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 24, 10, 1, 16, 80, 60, 14, 1, 32, 240, 280, 112, 18, 1, 64, 672, 1120, 672, 180, 22, 1, 128, 1792, 4032, 3360, 1320, 264, 26, 1, 256, 4608, 13440, 14784, 7920, 2288, 364, 30, 1, 512, 11520, 42240, 59136, 41184, 16016, 3640, 480, 34, 1
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

Factors as (1/(1-x),x/(1-x))*(1/(1-x),x*(1+x)/(1-x)^2) or A007318 times A114188. Also (1/(1-2*x),x/(1-2*x))*(1,x*(1+2*x)). Inverse is A114193. Row sums are A007583. Diagonal sums are A007051.

Examples

			Triangle begins
1;
2, 1;
4, 6, 1;
8, 24, 10, 1;
16, 80, 60, 14, 1;
32, 240, 280, 112, 18, 1;
		

Formula

T(n,k) = sum{j=0..n, C(k, j)*C(n, k+j)}*2^(n-k).
T(n,k) = 2^(n-k)*binomial(n+k,2k) = 2^(n-k)*A085478(n,k). - Philippe Deléham, May 05 2006
T(n,k) = A013609(n+k, n-k). - Johannes W. Meijer, Sep 05 2013
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 17 2014