A114193
Riordan array (1/(1+2xc(-2x)),xc(-2x)/(1+2xc(-2x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, -2, 1, 8, -6, 1, -40, 36, -10, 1, 224, -224, 80, -14, 1, -1344, 1440, -600, 140, -18, 1, 8448, -9504, 4400, -1232, 216, -22, 1, -54912, 64064, -32032, 10192, -2184, 308, -26, 1, 366080, -439296, 232960, -81536, 20160, -3520, 416, -30, 1, -2489344, 3055104, -1697280, 639744, -176256, 35904, -5304, 540, -34, 1
Offset: 0
Triangle begins
1;
-2, 1;
8, -6, 1;
-40, 36, -10, 1;
224, -224, 80, -14, 1;
-1344, 1440, -600, 140, -18, 1;
-
c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1/(1 + 2 # c[-2 #])&, # c[-2 #]/(1 + 2 # c[-2 #])&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A329918
Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 0, 1, 0, 4, 0, 6, 0, 1, 0, 0, 12, 0, 8, 0, 1, 0, 8, 0, 24, 0, 10, 0, 1, 0, 0, 32, 0, 40, 0, 12, 0, 1, 0, 16, 0, 80, 0, 60, 0, 14, 0, 1, 0, 0, 80, 0, 160, 0, 84, 0, 16, 0, 1, 0, 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 2, 0, 1;
[4] 0, 0, 4, 0, 1;
[5] 0, 4, 0, 6, 0, 1;
[6] 0, 0, 12, 0, 8, 0, 1;
[7] 0, 8, 0, 24, 0, 10, 0, 1;
[8] 0, 0, 32, 0, 40, 0, 12, 0, 1;
[9] 0, 16, 0, 80, 0, 60, 0, 14, 0, 1;
The first few polynomials:
p(0,x) = 1;
p(1,x) = x;
p(2,x) = x^2;
p(3,x) = 2*x + x^3;
p(4,x) = 4*x^2 + x^4;
p(5,x) = 4*x + 6*x^3 + x^5;
p(6,x) = 12*x^2 + 8*x^4 + x^6;
Row sums are
A001045 starting with 1, which is
A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated
A133494.
-
using Nemo # Returns row n.
function A329918(row)
R, x = PolynomialRing(ZZ, "x")
function p(n)
n < 3 && return x^n
x*p(n-1) + 2*p(n-2)
end
p = p(row)
[coeff(p, k) for k in 0:row]
end
for row in 0:9 println(A329918(row)) end # prints triangle
-
T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)):
seq(seq(T(n, k), k=0..n), n=0..11);
Showing 1-2 of 2 results.
Comments