A114205 Write decimal expansion of 1/n as 0.PPP...PQQQ..., where QQQ... is the cyclic part. If the expansion does not terminate, any leading 0's in QQQ... are regarded as being at the end of the PPP...P part. Sequence gives PPP...P, right justified, with leading zeros omitted.
5, 0, 25, 2, 1, 0, 125, 0, 1, 0, 8, 0, 0, 0, 625, 0, 0, 0, 5, 0, 0, 0, 41, 4, 0, 0, 3, 0, 0, 0, 3125, 0, 0, 0, 2, 0, 0, 0, 25, 0, 0, 0, 2, 0, 0, 0, 208, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 1, 0, 0, 0, 15625, 0, 0, 0, 1, 0, 0, 0, 13, 0, 0, 1, 1, 0, 0, 0, 125, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 0, 10
Offset: 2
Examples
n .. expansion of 1/n .... a b c d 2 .50000000000000000000... 5 1 0 0 3 .33333333333333333333... 0 0 3 1 4 .25000000000000000000... 25 2 0 0 5 .20000000000000000000... 2 1 0 0 6 .16666666666666666667... 1 1 6 1 7 .14285714285714285714... 0 0 142857 6 8 .12500000000000000000... 125 3 0 0 9 .11111111111111111111... 0 0 1 1 10 .1000000000000000000... 1 1 0 0 11 .0909090909090909090... 0 1 90 2 12 .0833333333333333333... 8 2 3 1 13 .0769230769230769230... 0 1 769230 6 14 .0714285714285714285... 0 1 714285 6 15 .0666666666666666666... 0 1 6 1 16 .0625000000000000000... 625 4 0 0 (Start) 92 .0108695652173913043... 10 3 869...260 22 102 .009803921568627450... 0 2 980...450 16 416 .002403846153846153... 240 5 384615 6 4544 .00022007042253521... 2200 7 704...450 35 (End) - _Ruud H.G. van Tol_, Nov 20 2024
Programs
-
Maple
A114205 := proc(n) local sh,lpow,mpow,a,b ; lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then a := (10^lpow-10^mpow)/n ; sh := 10^(lpow-mpow)-1 ; b := a mod sh ; a := floor(a/sh) ; while b>0 and b*10 < sh+1 do a := 10*a ; b := 10*b ; end ; RETURN(a) ; fi ; od ; lpow := lpow+1 ; od ; end: for n from 2 to 600 do printf("%d %d ",n,A114205(n)) ; od ; # R. J. Mathar, Oct 19 2006
-
Mathematica
fa[n_] := Block[{p},p = First[RealDigits[1/n]];If[ ! IntegerQ[Last[p]], p = Join[Most[p],TakeWhile[Last[p],#==0&]]];FromDigits[p]];Table[fa[n], {n, 100}] (* Ray Chandler, Oct 18 2006 *)
-
PARI
a(n)= my(s=max(valuation(n, 2), valuation(n, 5))); s||return(0); my([p, r]= divrem(10^s, n)); if(r&&(r=n\r)>9, s+=logint(r, 10)); 10^s\n; \\ Ruud H.G. van Tol, Nov 19 2024
Extensions
More terms from Ray Chandler and Hans Havermann, Oct 18 2006
Edited by Andrei Zabolotskii, Jul 20 2025
Comments