cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114208 Number of permutations of [n] having exactly one fixed point and avoiding the patterns 123 and 231.

Original entry on oeis.org

1, 0, 3, 2, 6, 6, 12, 10, 21, 16, 31, 24, 44, 32, 60, 42, 77, 54, 97, 66, 120, 80, 144, 96, 171, 112, 201, 130, 232, 150, 266, 170, 303, 192, 341, 216, 382, 240, 426, 266, 471, 294, 519, 322, 570, 352, 622, 384, 677, 416, 735, 450, 794, 486, 856, 522, 921, 560
Offset: 1

Views

Author

Emeric Deutsch, Nov 17 2005

Keywords

Examples

			a(2)=0 because none of the permutations 12 and 21 has exactly one fixed point.
a(3)=3 because we have 132, 213 and 321.
a(4)=2 because we have 4132 and 4213.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if n mod 6 = 0 then n^2/6 elif n mod 6 = 1 or n mod 6 = 5 then (7*n^2-12*n+29)/24 elif n mod 6 = 2 or n mod 6 = 4 then (n^2-4)/6 else (7*n^2-12*n+45)/24 fi end: seq(a(n),n=1..70);
  • Mathematica
    npn[n_]:=Module[{c=Mod[n,6]},Which[c==0,n^2/6,c==1,(7n^2-12n+29)/24,c==2,(n^2-4)/6,c==3,(7n^2-12n+45)/24,c==4,(n^2-4)/6,c==5,(7n^2-12n+29)/24]]; Array[npn,60] (* or *) LinearRecurrence[{-1,2,3,0,-3,-2,1,1},{1,0,3,2,6,6,12,10},60] (* Harvey P. Dale, Mar 05 2012 *)

Formula

n^2/6 if n mod 6 = 0; (7*n^2-12*n+29)/24 if n mod 6 = 1 or 5; (n^2-4)/6 if n mod 6 = 2 or 4; (7*n^2-12*n+45)/24 if n mod 6 = 3.
a(n) = a(n-1)+ 2*a(n-2)+3*a(n-3)-3*a(n-5)-2*a(n-6)+a(n-7)+a(n-8). [Harvey P. Dale, Mar 05 2012]
G.f.: -x*(2*x^6+2*x^5+2*x^4+2*x^3+x^2+x+1) / ((x-1)^3*(x+1)^3*(x^2+x+1)). [Colin Barker, Aug 11 2013]