A114253 a(n) = C(5+2*n,5+n)*C(10+2*n,0+n).
1, 84, 3276, 92400, 2187900, 46558512, 923410488, 17439488352, 317907339750, 5644249611000, 98209943231400, 1682207622669600, 28457345616827400, 476607460678020000, 7917519856977720000, 130649634333275016960, 2143941655711783421340, 35018537985874435552560
Offset: 0
Examples
If n=1 then C(5+2*1,5+1)*C(10+2*1,0+1) = C(7,6)*C(12,1) = 7*12 = 84. If n=11 then C(5+2*n,5+n)*C(10+2*n,0+n) = C(27,16)*C(32,11) = 13037895*129024480 = 1682207622669600.
Links
- Robert Israel, Table of n, a(n) for n = 0..828
Programs
-
Maple
seq(binomial(5+2*n,5+n)*binomial(10+2*n,n),n=0..30); # Robert Israel, Jan 11 2019
-
Mathematica
a[n_] := Binomial[2*n + 5, n + 5]*Binomial[2*n + 10, n]; Array[a, 20, 0] (* Amiram Eldar, Sep 06 2025 *)
Formula
From Robert Israel, Jan 11 2019: (Start)
(n+1)^2*(11+n)*a(n+1) = 4*(7+2*n)*(3+n)*(11+2*n)*a(n).
a(n) ~ 32768*16^n/(Pi*n). (End)