cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114253 a(n) = C(5+2*n,5+n)*C(10+2*n,0+n).

Original entry on oeis.org

1, 84, 3276, 92400, 2187900, 46558512, 923410488, 17439488352, 317907339750, 5644249611000, 98209943231400, 1682207622669600, 28457345616827400, 476607460678020000, 7917519856977720000, 130649634333275016960, 2143941655711783421340, 35018537985874435552560
Offset: 0

Views

Author

Zerinvary Lajos, Feb 04 2006

Keywords

Examples

			If n=1 then C(5+2*1,5+1)*C(10+2*1,0+1) = C(7,6)*C(12,1) = 7*12 = 84.
If n=11 then C(5+2*n,5+n)*C(10+2*n,0+n) = C(27,16)*C(32,11) = 13037895*129024480 = 1682207622669600.
		

Crossrefs

Programs

  • Maple
    seq(binomial(5+2*n,5+n)*binomial(10+2*n,n),n=0..30); # Robert Israel, Jan 11 2019
  • Mathematica
    a[n_] := Binomial[2*n + 5, n + 5]*Binomial[2*n + 10, n]; Array[a, 20, 0] (* Amiram Eldar, Sep 06 2025 *)

Formula

From Robert Israel, Jan 11 2019: (Start)
(n+1)^2*(11+n)*a(n+1) = 4*(7+2*n)*(3+n)*(11+2*n)*a(n).
a(n) ~ 32768*16^n/(Pi*n). (End)
a(n) = A003516(n+2) * A004311(n+5). - Amiram Eldar, Sep 06 2025