A114290 Number of oriented n-dimensional polytopes with n+3 vertices, meaning that two polytopes are identified if they have the same combinatorial type and there exists an orientation-preserving homeomorphism mapping the first polytope to the second polytope.
0, 1, 7, 38, 170, 617, 1979, 5859, 16571, 45516, 123159, 330736, 885780, 2372305, 6362965, 17102719, 46078541, 124440388, 336829857, 913658780, 2483217288, 6761405513, 18441239903, 50375429081, 137807555515, 377492301876
Offset: 1
Keywords
References
- B. Grünbaum, Convex Polytopes, Springer-Verlag, 2003, Second edition prepared by V. Kaibel, V. Klee and G. M. Ziegler, p. 121a.
Links
- Éric Fusy, Counting d-polytopes with d+3 vertices, arXiv:math/0511466 [math.CO], 2005.
- Éric Fusy, Counting d-polytopes with d+3 vertices, Electron. J. Comb. 13 (2006), no. 1, research paper R23, 25 pp.
- E. K. Lloyd, The number of d-polytopes with d+3 vertices, Mathematika 17 (1970), 120-132.
Programs
-
Maple
N:=30: with(numtheory): G:=-ln(1-2*x^3/(1-2*x)^2): H:=-log(1-2*x)+ln(1-x): K:=-(x^10+3*x^9-3*x^8-7*x^7+4*x^6+4*x^5+4*x^4+3*x^3-2*x^2+1)*x/(1-x)^5/(x+1)^3: series(1/(x^3-x^4)*(1/2*sum(phi(2*r+1)/(2*r+1)*subs(x=x^(2*r+1),G),r=0..N)+sum(phi(r)/r*subs(x=x^r,H),r=1..N)+K),x,N);
-
Mathematica
terms = 26; G[x_] = -Log[1 - 2 (x^3/(1 - 2 x)^2)]; H[x_] = -Log[1 - 2 x] + Log[1 - x]; K[x_] = -(x^10 + 3 x^9 - 3 x^8 - 7 x^7 + 4 x^6 + 4 x^5 + 4 x^4 + 3 x^3 - 2 x^2 + 1) x/(1 - x)^5/(x + 1)^3; 1/(x^3 - x^4) (1/2 Sum[EulerPhi[2 r + 1]/(2 r + 1) G[x^(2 r + 1)], {r, 0, terms+3}] + Sum[EulerPhi[r]/r H[x^r], {r, 1, terms+3}] + K[x]) + O[x]^(terms+2) // CoefficientList[#, x]& // Rest // Most // Round (* Jean-François Alcover, Dec 14 2018 *)