A114299 First row of Modified Schroeder numbers for q=9 (A114295).
1, 1, 1, 1, 1, 2, 5, 13, 34, 89, 288, 1029, 3794, 14113, 52624, 210428, 883881, 3805858, 16570925, 72497060, 325602364, 1498899060, 7017126473, 33185818242, 157858754637, 759960988368, 3706528583080, 18273586377144, 90805138443560, 453695642109973
Offset: 0
Keywords
Examples
The number of paths from (0,0) to (6,6) staying between the lines y=x and y=4x/5 using steps of length (0,1), (1,0) and (1,1) is a(6)=5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- C. Hanusa, A Gessel-Viennot-Type Method for Cycle Systems with Applications to Aztec Pillows, PhD Thesis, 2005, University of Washington, Seattle, USA.
Programs
-
Maple
b:= proc(x, y) option remember; `if`(y>x or y<4*x/5, 0, `if`(x=0, 1, b(x, y-1)+b(x-1, y)+b(x-1, y-1))) end: a:= n-> b(n, n): seq(a(n), n=0..35); # Alois P. Heinz, Apr 25 2013
-
Mathematica
b[x_, y_] := b[x, y] = If[y > x || y < 4*x/5, 0, If[x == 0, 1, b[x, y-1] + b[x-1, y] + b[x-1, y-1]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
Comments