A114324 Number of partitions of n with a product greater than n.
1, 0, 0, 0, 0, 1, 3, 6, 10, 16, 26, 39, 56, 79, 111, 150, 200, 265, 349, 453, 586, 749, 957, 1209, 1522, 1903, 2379, 2950, 3654, 4500, 5534, 6771, 8271, 10063, 12228, 14799, 17884, 21543, 25919, 31087, 37233, 44477, 53063, 63149, 75059, 89014, 105436, 124631
Offset: 0
Keywords
Examples
a(6) = 3 since there are 3 partitions of 6 with product greater than 6: {3,3}, {2,2,2}, {4,2}. From _Gus Wiseman_, Mar 27 2019: (Start) The a(5) = 1 through a(9) = 16 partitions: (32) (33) (43) (44) (54) (42) (52) (53) (63) (222) (322) (62) (72) (331) (332) (333) (421) (422) (432) (2221) (431) (441) (521) (522) (2222) (531) (3221) (621) (3311) (3222) (3321) (4221) (4311) (5211) (22221) (32211) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Pankaj Jyoti Mahanta, On the number of partitions of n whose product of the summands is at most n, arXiv:2010.07353 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; lst=Table[Length@Select[Partitions[n], (Times @@ # > n) &],{n,50}] Table[Length[Select[IntegerPartitions[n],Times@@#>n&]],{n,0,20}] (* Gus Wiseman, Mar 27 2019 *)
Extensions
a(0) = 1 prepended by Gus Wiseman, Mar 27 2019
Comments