cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114410 Cumulative sum of double primorials (A079078).

Original entry on oeis.org

1, 3, 6, 16, 37, 147, 420, 2290, 7477, 50487, 200910, 1534220, 7099871, 61765581, 301088574, 2870376944, 15554495573, 167142509403, 940873745772, 11097270672382, 66032188454581, 807449164097111, 5147307668890832
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

The cumulative sum is prime for a(2) = 3, a(4) = 37, a(8) = 7477, a(12) = 7099871, a(16) = 15554495573. The sum a(n) is semiprime for n = 2, 9.

Examples

			n 0## + ... + n##
0 1.
1 1+2 = 3.
2 1+2+3 = 6.
3 1+2+3+10 = 16.
4 1+2+3+10+21 = 37.
5 1+2+3+10+21+110 = 147.
6 1+2+3+10+21+110+273 = 420.
7 1+2+3+10+21+110+273+1870 = 2290.
8 1+2+3+10+21+110+273+1870+5187 = 7477.
9 1+2+3+10+21+110+273+1870+5187+ 43010 = 50487.
10 1+2+3+10+21+110+273+1870+5187+ 43010 + 150423 = 200910.
		

Crossrefs

Cf. A079078.

Programs

  • Mathematica
    p[0]=1; p[1]=2; p[n_] := p[n] = Prime[n]*p[n - 2]; Accumulate[p /@ Range[0, 22]] (* Giovanni Resta, Jun 14 2016 *)

Formula

a(n) = 0## + 1## + ... + n##, where n## = p(n)*(n-2)##, where p(n) is the n-th prime.

Extensions

Data corrected by Giovanni Resta, Jun 14 2016