A114411 Triple primorial n### = n#3.
1, 2, 3, 5, 14, 33, 65, 238, 627, 1495, 6902, 19437, 55315, 282982, 835791, 2599805, 14998046, 49311669, 158588105, 1004869082, 3501128499, 11576931665, 79384657478, 290593665417, 1030346918185, 7700311775366, 29349960207117
Offset: 0
Keywords
Examples
n### is also written n#3. 0### = p(0) = 1. 1### = p(1) = 2. 2### = p(2) = 3. 3### = p(3)p(0) = 5*1 = 5. 4### = p(4)p(1) = 7*2 = 14. 5### = p(5)p(2) = 11*3 = 33. 6### = p(6)p(3)p(0) = 13*5*1 = 65. 7### = p(7)p(4)p(1) = 17*7*2 = 238. 8### = p(8)p(5)p(2) = 19*11*3 = 627. 9### = p(9)p(6)p(3)p(0) = 23*13*5*1 = 1495. 10### = p(10)p(7)p(4)p(1) = 29*17*7*2 = 6902. 11### = p(11)p(8)p(5)p(2) = 31*19*11*3 = 19437. 12### = 37*23*13*5*1 = 55315. 13### = 41*29*17*7*2 = 282982. 14### = 43*31*19*11*3 = 835791. 15### = 47*37*23*13*5*1 = 2599805. 27### = 106125732573055 = 5 * 13 * 23 * 37 * 47 * 61 * 73 * 89 * 103.
Links
- Eric Weisstein's World of Mathematics, Primorial.
- Eric Weisstein's World of Mathematics, Multifactorial.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; a[2] = 3; a[n_] := a[n - 3] * Prime[n] Array[a, 27, 0] (* Jon Maiga, Aug 04 2019 *)
Formula
a(n) = n### = prime(n)*((n-3)###) = Prod[i == n mod 3, to n] prime(i). Notationally, prime(0) = 1; (-n)### = 0### = 1.
Comments