cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114411 Triple primorial n### = n#3.

Original entry on oeis.org

1, 2, 3, 5, 14, 33, 65, 238, 627, 1495, 6902, 19437, 55315, 282982, 835791, 2599805, 14998046, 49311669, 158588105, 1004869082, 3501128499, 11576931665, 79384657478, 290593665417, 1030346918185, 7700311775366, 29349960207117
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to triple factorial A007661 = n!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n###)*((n-1)###)*((n-2)###) = n#. n### is a k-almost prime for k = ceiling(n/3).

Examples

			n### is also written n#3.
0### = p(0) = 1.
1### = p(1) = 2.
2### = p(2) = 3.
3### = p(3)p(0) = 5*1 = 5.
4### = p(4)p(1) = 7*2 = 14.
5### = p(5)p(2) = 11*3 = 33.
6### = p(6)p(3)p(0) = 13*5*1 = 65.
7### = p(7)p(4)p(1) = 17*7*2 = 238.
8### = p(8)p(5)p(2) = 19*11*3 = 627.
9### = p(9)p(6)p(3)p(0) = 23*13*5*1 = 1495.
10### = p(10)p(7)p(4)p(1) = 29*17*7*2 = 6902.
11### = p(11)p(8)p(5)p(2) = 31*19*11*3 = 19437.
12### = 37*23*13*5*1 = 55315.
13### = 41*29*17*7*2 = 282982.
14### = 43*31*19*11*3 = 835791.
15### = 47*37*23*13*5*1 = 2599805.
27### = 106125732573055 = 5 * 13 * 23 * 37 * 47 * 61 * 73 * 89 * 103.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 3;
    a[n_] := a[n - 3] * Prime[n]
    Array[a, 27, 0] (* Jon Maiga, Aug 04 2019 *)

Formula

a(n) = n### = prime(n)*((n-3)###) = Prod[i == n mod 3, to n] prime(i). Notationally, prime(0) = 1; (-n)### = 0### = 1.