A114415 Records in 5-almost prime gaps ordered by merit.
16, 24, 28, 42, 56, 70
Offset: 1
Examples
Records defined in terms of A114405 and A014614: n A114405(n) A114405(n)/log_10(A014614(n)) = ========== ============================= 1 16 16/log_10(32) = 10.6301699 2 24 24/log_10(48) = 14.2751673 3 8 8/log_10(72) = 4.30725248 4 28 28/log_10(80) = 14.7129144 5 4 4/log_10(108) = 1.96712564 6 8 8/log_10(112) = 3.90392819 7 42 42/log_10(120) = 20.2002592 8 6 6/log_10(168) = 2.69625443 ... 22 56 56/log_10(312) = 22.4524976
Programs
-
Maple
A014614 := proc(nmax) local a,i; a := [] ; i := 1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 5 then a := [op(a),i] ; fi ; i := i+1 ; end: a ; end: A114405 := proc(a014614) local a,i; a := [] ; for i from 2 to nops(a014614) do a := [op(a), op(i,a014614)-op(i-1,a014614)] ; od ; a ; end: a014614 := A014614(100000) : a114405 := A114405(a014614) : Digits := 30 : rec := -1 : for i from 1 to nops(a114405) do if evalf(a114405[i]/log(a014614[i])) > rec then printf("%d, ",a114405[i]) ; rec := evalf(a114405[i]/log(a014614[i])) ; fi ; od ; # R. J. Mathar, May 10 2007
Formula
Extensions
a(6) from R. J. Mathar, May 10 2007
Comments