cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114420 Quadruple primorial n#### = n#4.

Original entry on oeis.org

1, 2, 3, 5, 7, 22, 39, 85, 133, 506, 1131, 2635, 4921, 20746, 48633, 123845, 260813, 1224014, 2966613, 8297615, 18517723, 89353022, 234362427, 688702045, 1648077347, 8667243134, 23670605127, 70936310635, 176344276129
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quadruple factorial A007662 = n!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n####)*((n-1)####)*((n-2)####)*((n-3)####) = n#. n#### is a k-almost prime for k = ceiling(n/4).

Examples

			n#### is also written n#4.
0#### = p(0) = 1.
1#### = p(1) = 2.
2#### = p(2) = 3.
3#### = p(3) = 5.
4#### = p(4)p(0) = 7*1 = 7.
5#### = p(5)p(1) = 11*2 = 22.
6#### = p(6)p(2) = 13*3 = 39.
7#### = p(7)p(3) = 17*5 = 85.
8#### = p(8)p(4)p(0) = 19*7*1 = 133.
9#### = p(9)p(5)p(1) = 23*11*2 = 506.
10#### = p(10)p(6)p(2) = 29*13*3 = 1131.
11#### = p(11)p(7)p(3) = 31*17*5 = 2635.
12#### = 37*19*7*1 = 4921.
13#### = 41*23*11*2 = 20746.
14#### = 43*29*13*3 = 48633.
15#### = 47*31*17*5 = 123845.
16#### = 53*37*19*7*1 = 260813.
17#### = 59*41*23*11*2 = 1224014.
18#### = 61*43*29*13*3 = 2966613.
19#### = 67*47*31*17*5 = 8297615.
20#### = 71*53*37*19*7*1 = 18517723.
21#### = 73*59*41*23*11*2 = 89353022.
22#### = 79*61*43*29*13*3 = 234362427.
23#### = 83*67*47*31*17*5 = 688702045.
24#### = 89*71*53*37*19*7*1 = 1648077347.
25#### = 97*73*59*41*23*11*2 = 8667243134.
26#### = 101*79*61*43*29*13*3 = 23670605127.
27#### = 103*83*67*47*31*17*5 = 70936310635.
28#### = 107*89*71*53*37*19*7*1 = 176344276129.
		

Crossrefs

Formula

a(n) = n#### = prime(n)*((n-4)####) = Prod[i == n mod 4, to n] prime(i). Notationally, prime(0) = 1; (-n)#### = 0#### = 1.