A114439 Indices of semiprime pentagonal numbers.
4, 5, 6, 10, 13, 14, 29, 34, 38, 41, 46, 53, 58, 73, 86, 94, 101, 106, 109, 118, 134, 149, 181, 206, 214, 218, 226, 233, 254, 274, 281, 293, 314, 326, 349, 394, 398, 401, 409, 421, 449, 454, 458, 461, 478, 538, 541, 566, 569, 613, 626, 634, 661, 673, 694
Offset: 1
Examples
a(1) = 4 because P(4) = PentagonalNumber(4) = 4*(3*4 -1)/2 = 22 = 2 * 11 is semiprime. a(2) = 5 because P(5) = 5*(3*5 -1)/2 = 35 = 5 * 7 is semiprime. a(7) = 29 because P(29) = 29*(3*29 -1)/2 = 1247 = 29 * 43 is semiprime. a(8) = 34 because P(34) = 34*(3*34 -1)/2 = 1717 = 17 * 101 is semiprime. a(17) = 101 because P(101) = 101*(3*101 -1)/2 = 15251 = 101 * 151 is semiprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Pentagonal Number.
Programs
-
Mathematica
Position[PolygonalNumber[5,Range[700]],?(PrimeOmega[#]==2&)]//Flatten (* _Harvey P. Dale, Oct 02 2021 *)
Formula
Extensions
More terms from Giovanni Resta, Jun 14 2016
Comments