A114441 Indices of 3-almost prime pentagonal numbers.
3, 7, 8, 9, 17, 18, 20, 21, 22, 23, 25, 26, 28, 30, 31, 37, 44, 49, 50, 61, 62, 65, 66, 69, 71, 74, 76, 78, 79, 85, 89, 93, 97, 98, 113, 116, 121, 122, 129, 130, 133, 137, 141, 146, 148, 151, 154, 157, 158, 161, 164, 166, 170, 173, 174, 178, 185, 186, 188, 190, 193, 194
Offset: 1
Examples
a(1) = 3 because P(3) = PentagonalNumber(3) = 3*(3*3 -1)/2 = 12 = 2^2 * 3 is a 3-almost prime. a(2) = 7 because P(7) = 7*(3*7 -1)/2 = 70 = 2 * 5 * 7 is a 3-almost prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Pentagonal Number.
Programs
-
Maple
A000326 := proc(n) n*(3*n-1)/2 ; end: isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: for n from 1 to 400 do if isA014612(A000326(n)) then printf("%d,",n) ; fi; od: # R. J. Mathar, Jan 27 2009
-
Mathematica
Select[Range[200], PrimeOmega[PolygonalNumber[5, #]] == 3 &] (* Amiram Eldar, Oct 06 2024 *)
Formula
Extensions
125 removed, 145 replaced with 146 by R. J. Mathar, Jan 27 2009
Comments