A114486 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k UUDD's starting at level 0; here U=(1,1), D=(1,-1) (0<=k<=floor(n/2)).
1, 1, 1, 1, 3, 2, 10, 3, 1, 31, 8, 3, 98, 27, 6, 1, 321, 88, 16, 4, 1078, 287, 54, 10, 1, 3686, 960, 183, 28, 5, 12789, 3280, 616, 95, 15, 1, 44919, 11378, 2106, 332, 45, 6, 159407, 39953, 7323, 1152, 155, 21, 1, 570704, 141752, 25785, 4028, 556, 68, 7, 2058817
Offset: 0
Examples
T(5,2)=3 because we have UUDDUUDDUD, UUDDUDUUDD and UDUUDDUUDD, where U=(1,1), D=(1,-1). Triangle starts: 1; 1; 1,1; 3,2; 10,3,1; 31,8,3; 98,27,6,1; ...
Links
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
Programs
-
Maple
C:=(1-sqrt(1-4*z))/2/z: eq:=G=1+z*(C-z+t*z)*G: G:=solve(eq,G): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 15 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/2)) od; # yields sequence in triangular form
Formula
G.f. G=G(t, z) satisfies G=1+z(C-z+tz)G, where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. G=2/[1+2z^2-2tz^2+sqrt(1-4z)].
Comments